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THE THEORY OF DIFFUSION IN STRAINED SYSTEMS'

By Lous A Gimiranco and Huserr Ho GriMes

SUMMARY

Beeanse the current theory of solid-state diffusion
ix timited to wnstrained erystals and cannot be
applied readiby to strained systems, Fiek's first and
second laws were generalized to include the effeets of
strain on the diffusion rates.  The nonhomogeneity
introduced into the atomic jump frequeney by strain
was found to contribute strain-dependent terms to the
diffusion equations in addition to the terms contain-
ing the concentration gradient.

From a consideration of the effect of strain on the
free energy of activation, it can be shown that Jor
simple strains, such as those resulting [rom com-
pression, tension, shear, and hydrostatie pressure,
the diffusion coefficient is an exponential function of
the lattice parameter.  An cxamination of the arail-
uble ceperimental data for the variation of diffusion
cocfficients with  pressure confirms this theoretical
prediction.

The theory presented hevein states that the magni-
tude of the rariation of the difhision cocfficient with
pressure depends on the interatomic Jorees as the
diffusing atom moves from its equilibrivm position
to the activated poxition.  On the basis of this
theory, a parameter depending wpon the interatomic
Sorcex can be computed from the erperimental data.
Dnall cases inrestigated ,the magnitudes of this param-
cter were in agreement with the known character-
istics of the interatomic potential-energy functions
of the systems.

The effect of plastic flow on the diffusion rate was
also studied by considering the rate at which raecan-
cles are produced by distocation motion and the rate
at which racancies condense at inhomogeneitios n
the crystal.  The resulting equations prediet that
for a vacancy mechanism the diffusion cocficient
raries linearly with the strain rate.  This conctusion
In i agreement with experiment.

INTRODUCTION

The theory of diffusion in solids has been the
subject of a great deal of investigation in recent
vears, and satisfactory theoretical models have
been construeted that adequately deseribe the
basic diffusion processes in many simple solids.
Present theories, however, are limited to unstrained
crystals and are not strietly applicable to straimed
svstems.  Sinee the diffusion rate s determined
by the energy of interaction hetween the diffusing
atom and the ervstal Tattice, and sincee this energy
depends on the interatomic distanees, i€ is (o be
expected that the diffusion coefficients will be
altered Dy a strain superimposed on the crystal.
Some experimental evidenee is available that indi-
entes that elastic strain can inerease the self-
diftusion coefficient by as much as a Tactor ol 2
(ref. 1) aud that plastic strain can inerease the
self-diffusion coefficient by an ovder of magnitude
(refs. 2 and 3. Also, it is well known that hydro-
static pressure deercases the diffusion coeflicient;
in fact, a pressure of 7500 atmospheres is suflicient
to lower the self=iffusion coeflicient of sodinm by
an order of magnitude at 940° € (rel. 4.

If the erystal is strained in a nonhomogencous
manuer, another factor hecomes operative in addi-
tion to those that control the change in the diffu-
sion coefficient.  According to the theory of irre-
versible processes (ref. 5), every thermodynamic
flux is proportional to every thermodynamic foree,
so that the diffusion flux is not only proportional
to the concentration gradients, but is also propor-
tional to (he strain geadients in the erystal. Thus,
not only is the magnitude of the diffusion coef-
ficient changed by a generalized strain, but the
hasic character of the diffusion equations is also
changed.

Because of the important role played by diffu-
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sioh processes in many solid-state phenomena such
as oxidation, the aunecaling of radiation damage,
creep, and rupture, and in view of the wide variety
of applications in which materials are under strain,
a thorough understanding of the effects of strain
on diffusion is highly desirable,

In this report the theory of diffusion in strained
syvstems 18 developed from the point of view of
molecular kineties, the fundamental physical fae-
tors involved are discussed, and the resulting
theory is compared with existing experimental
data.

BASIC EQUATIONS OF DIFFUSION THEORY

Generalizations of Fick’s first and second laws
are obtained for the diffusion of a single species
in a crystalline lattice by a modification of the
methaod of conditional transition probabilities (ref.
6). The diffusion equations are expressed in terms
of atomic jump frequencies without the usual
condition that the jump frequency is independent
of position. In this form, the equations can casily
be applied to a strained lattice.

>
Consider a volume element dr in the crystal
centered about the point defined by the position

vector . The numlml of particles of l]w «h”lmng

species contained in d/ s given by \(1 f)(l/, where

Net) is the concentration of diffusing species at

In general, the number

>

of particles in the volume element dr is not con-
stant, are continually jumping

the position » and time £,

because particles
>
out of dr while other particles are jumping into
»
dr from adjacent portions of the erystal.  The

—
rate at which N(rt) changes as a result of these
{wo processes ean be caleulated as follows: If

> >
A(ra’t

atom in the volume element s jumps to the

ple” dtis the conditional probability that an
>

volume element 7 during time d¢, thon th(‘ nuni-

ber of particles that jump from (li to (ll y thme
df is given by
) - -
Nr,t)Alr, v, t)dr dr’ dt (1)

and the total number of particles that jump out of

>
dr during time d¢ is obtained by integrating overall

>

dr’s that s,

> - - -
N (L drdi— Nt (lrdtJQA(rr Hdr(2)

. >
where NV_(rt) is the rate at which particles leave
-y
the volume element dr.
Similarly, the number of particles that jump

- >
from dr” to dr during time df is given by

NG OAG 7, ) drdr dt (3)

and the total number of particles that jump into

->
dr from other parts of the erystal is given by
- - + M ] =2 -y
\,F(r,t)drdt*drdfj,a."\"(r’,t‘)A(r’,r,l)dr’ (4)
2

. 4
where Vi (rt) is the rate at which particles enter
>
the element dr. The net rate of increase of
y
N(#t) is obtained by subtracting equation (2)

from equation (4):

ON

ot J ’\(r HA(r r f)di

» . ’) *> k4
- N, t) ’*, Alrr’ ydr” (B)
Jrr
At this point it 1= convenient to express equation
5005

(3) in terms of the jump distance (#’—r) by per-
forming a transformation of variables so that

> -y »
N=r'—r (6)
. pyd .
In teriis of the jump wvector X, equation (5)
becomes
ON

* R - R -
J NOFX DA+ X Hd X
ot v

—N(rt) f%A(-IT,}:%j\t,z‘)dK' )
X

The “unetion A(H» \ r t ls Iho probability fre-

quency that a particle at r- + A\ will jump to 1"

»
and if the vector X would always terminate ad
point that is capable of accommodating the dif-
fusing particle, A would equal the atomic jump
frequency.  There are cases, however, such as in
diffusion by the vacancy mechanism, in which the

]
terminus of X cannot always accommodate the
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migrating particle.  The jump frequency must
then be multiplied by the probability that a
vacant site (‘xists dt the end of the atomie jump.

Therefore, if I'(r, 4\ is the .m)mu jump frequency
with jutp vector .\ and 1/(1 f) is the probability
>

that a site at »# is vaeant (e, it ean accept the

jumping particle), then,
» \? > \ ' ?
Ar b Xt - 1(7 —.Xyntrt ,
Alrr4 X - l‘(r,‘\')n(r—‘i ‘\',i)
Substituting equation (8) into equation (7) and
arbitrarily replacing X with the equally valid

-y
negative argument —.\ in
equation (7) give

the first integral of

ON_ ot) J NG X P =N, XY
ot X
L M > > - -y ’
: ;\“(r,l)J LT Xnr Xond Xy {9)
¥
In crystalline solids, I' is zero for all jump

veetors except for a small number of \™s, which

B4
may be denoted by X, T may then be expressed as

a delta function:

a » > »

Py 20 sy - (10)
! i=1

where a is the total number of possible jumps a
=)
The
- . 2

set of possible jump vectors X, and the value of «
are determined by the erystal structure of the
lattice.  Substituting equation (10) into equation
(9) and making use of the properties of the delta
function yield

particle can make out of its position at r.

%?zn(?,t)]; No—X f)zr (r— X)X —n)d X
NG j_{ SO (8N — Nl XA X

J X i=1
(AN G—N ) T (r— )

=

NSO (Pn(r - hb) ()
i=1

IN STRAINED SYSTEMS 3

It will now be assumed that the functions NT

and » ean he expressed as a Taylor expansion in
» »

powers of A, about the point s, retaining only the

first three terms of the expansion.  Therefore,

NG ,Hr=—x) - N )
> ., 1 » o
AVNT A (EENT, (12)
and
’y » =¥ » 1 > .
n(r-4 Nty = f) -t AV (A;-V)in (13)
- >

The derivatives are evaluated at the point r.
Equation (11) now can be written as

ON

> > " = » n -
> =nlr,ty Nty S50, —nlrt) 2 0-VNT,
i=1 i=1

l ¥ it ¥ _
+,nlr.t) STOVENT
2 i=1
N O 23T Tn

i=1

—n(r, ) Nty 2510,0r)—
=

V) (14)

] y yﬁ 1] >
— N 25T (N
2 =

ON >
oF I {_()\'

+l)[/1()\ ViENT, NT, )\ v n]} (15)

V)(IH’V I

Equation (15) is a generalization ol Kiek's

second law and is \ulul for any system regardless

of the nature of )\, or of the coordinate system

chosen. Also, if the strain is homogencous,
vI,=0. With these restrictions, equation (15)

reduces to

g;\,_ﬁl,,(, t) EI‘ (>\ V)N

1 - a o
_*547\‘7(1’,7‘) 2T (16)
2 i=

The position vector r)in equation (16) is referred
to an arbitrary coordinate system. Tt is always
possible to find a transformation of coordmates so
that the position vector is referred to the principal
axes of diffusion in which mixed derivatives, such
as O:N/dux Oy, vanish.
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In this casce,

oN nint)

a ] Oz:\" ) 021\" ‘ Oz ‘;\J'
ity 2 2 ¥4 2
oo 2 (A N o A )
\uf)"‘, On\y O, O
— o ’ 1 i ()\,, () W O?lz‘*‘)\zz 7:2)

(17
,
where X0 Ny, and A, are the components of X,
The coordinates are now referred to the prineipal
axes of diffusion.
Sinee Fiek's first and second laws are connected
by the equation of continuity,

oN -
ot =—V.Jy (18)

»
where Jy is the flux of species N, Fick's first law
corresponding to the second law given by equation
(17 1s

>

(1' ) A(/'f)
c];-: o l‘ ,JI ] )\u‘
' Eean SN S g,
-3
T, —nirt) L P }\u \(I t) L " )\W |
i=1 ‘ i=1 ()/
5 N
ool I ON L N & on
oJ.= 2 ;l A2 ():'+ o !Zl, I A"?)r,
(19

where J., 7, and o, are the components of .’N.

The  physical significance of the theoretical
development up to this point can be seen most
clearly by a consideration of equation (14). In
the usual expression for Fiek's second law in un-
strained systems, all terms except those involving
the second derivative of N are zero. The other
terms appear in equation (14), however, because it
was not assumed in the present development that
I’y and 2 are independent of position.  The second
term does not sum to zero sinee, in general, it is

not composed of terms antisymmetrie in )\),. Fur-
thermore, since I'; and n are functions of position,
they must be retained in the differential operators,
and terms dependent on the first and second deriv-
atives of T'; and n appear in equation (14).

In the case of a uniform homogencous strain,
equation (14) reduces to equation (17). If the
gradient of  is zero, equation (17) becomes equiv-
alent to Fick’s second law. In this simple case,

NATIONAL AERONAUTI''S AND
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it is neeessary only to caleulate the effeet of the
homogeneous strain on I, and # in order to
specify the effect of strain on diffusion.  The effect
of strain on the jump frequeney can be analyvzed
in terms of rate theory. This analysis is presented
m the following section. The effeet of strain on «
is dependent upon the diffusion mechanism.  For
interstitial diffusion, # 1 provided that the con-
centration of interstitials is low and that strains
do not affeet this value.  For diffusion by a
vacaney mechanism, however, » is the vacaney
concentration and will vary with strain,  An
analysis of this variation is presented in the section
DEPENDENCE OF VACANCY CONCEN-
TRATION ON STRAIN.

DEPENDENCE OF JUMP FREQUENCY ON STRAIN

According to the statistical theory of rate proe-
esses, the jump frequency is determined by the
ratio of two configurational partition functions,
one referring to the activated state and the other
referring to the normal state.  In analyzing the
effeet of strain on the jump frequency, the formu-
lation of the rate process theory in solids given in
reference 7 is used in which the jump frequency is
given by

ppe et e T do

r (.’1r) J.‘up —«,pAI)d/'

(20)

T 1s the tempera-
ture, and ¢ is the potential energy of the system
as a function of all the coordinates of all the
atoms - the crystal. The integral in the nu-
merator of equation (20) is evaluated over a hyper-
surfuce ¢ in the configuration space so that the
surface passes through the point corresponding
to the diffusing atom at its activated position
with all other atoms at their equilibrium position.
The hypersurface is also required to be perpendie-
ular to contours of constant potential energy in
the cor figuration space.  The hypersurface de-
fined i1 this manner divides the configuration
space it to two symmetrie parts.  The integral in
the densminator is evaluated over the configura-
tion voume » of one of these symmetrie parts.

Equation (20) was derived for the case of an
unstrained crystal.  However, it is applicable to
strained crystals if the potential energy ¢ is taken
to be » function of the six strain components

where £ is Boltzmann’s constant,
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€a3 a2 well as the atomic coordinates ¢, A similar
procedure has been used in reference 8 in an
analysis of the statistical mechanies of crystal
lattices.  Thus, the potential energy in equation
(20) is given by

¢ ‘P(’[i- ftn‘i) (21)

where g, represents the set of all atomic coordinates
and eqs represents the set of six independent strain
components.

The potential ¢ can be expanded in a Taylor
series about the normal lattice configuration in
the unstrained state to give

(42,0 (V—‘i - ( €
Y ‘r‘(QJy )1 Z \a Jaoo ( %_ZJ aéai 0.0 3

a(],b(h 0, (6% I}+‘) 2 (Dfuﬂbﬂ,a)o 06“,367,5

T Z 0(; €as (Oe

(22)
ﬂa(j; 0,0
where ? represents the set of atomic coordinates
when all the atoms are in their mean positions
for the normal state of the erystal, and the double
zero subseript indicates that the derivatives are
evaluated at the point (q},0).
If the potential energy is expanded about the
point (¢i,0), where ¢} represents the mean atomic
coordinates when the system is in the activated

state, then

. Q¢ | D‘P)
(gl =) 8 ( o
eld; 'H—? (\a(lj)i.n QH—% Beas )10

. a“’tp N
a(];\> d []6(]A + Z ( ae,,ga:,a,);,ﬂeaﬁeﬁ

“,6

- O > . 9
+j.<xZ.Jﬂa(1jeaﬁ (Oeaaaq;, 1,0+ (=)

The subseript 1,0 indicates that the derivatives
are evaluated at the point (¢3,0)

Since the point (g9,0) corresponds to an un-
strained ervstal with all atoms in a mean position
so that the erystal is at the bottom of a potential

L /
+§ Z Dq,

well, the first detivatives in equation (22) vanish:
o) (o8)

) =0 24)

a(]) O€qs 0,0 ( ’

The point (¢:,0) corresponds to a saddle point
with respect to the atomic coordinates gy, so that

213545 60 -2

IN STRAINED SYSTEMS 9
the derivative of ¢ with respeet to g, also vanishes
at this point. IHowever, (g5,0) is not a saddle
point or a minimum point with respect to the
strains, and therefore the derivative at this point
with respect to the strains does not vanish:

( g(‘}’) =0 (25)
7
e ﬂ) #0 (26)
Equations (22) and (23) therefore hecome
£ (]}’0)—}_() Z (DQJD(]A )) 0 04,81
+y 2 (5;;&; ), g0
+3 (»fa—fl Sqdeast ... (27)
jaB Ofada(]; 0,0 '
and
P (117 )+ g afa3>+ . €ad
+TZ ‘<p4> 64D
25F OQjan, to
+ E (Oe 30€5 > Cantyd
o o8
Jaﬁ(béasaq;) Pseest - (2D

Substituting equations (27) and (28) into the
denominator and numerator of equation (20),
respeclively, gives

(kTN

B
O%¢
‘ i o[ kg 7 5"‘"*(06,.50//,)”] C

’ 29)
O..
J 1((([ (’])[ / I Z 0 €u ( ‘)fudaqj >" ':l N

where T, is the jump frequency in the strained
svatem and where the functions gle). fi(g), and

folg) are defined by
( Ofmi) €ad

gle)—=ea p { 1

o(e)

2

@B
1 Aty
—.—)/‘"T %: R I:(xa;mio;w )I.n

b9

Q' .
( éfnﬁééyé)() n]} R
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andd

1
filq) =erp I:_/ET ¢(¢3,0)

1

[ O ) ] .
—_ e N RS
SET ‘?T' (\Oqjaqk I,.06(1,6(“ (31)

and

) |
fo((]) —exp ['—‘E;[. ol (1/‘,0)

’Ll Z ( Oq}qu) haq"] 142)

The functions fi(g) and fo(g) ave the Boltzmann
factors of the potential energyv expanded about the
saddle point of the activated state and about the
minimum of the normal erystal. Thercfore, in the
unstrained ease, equation (20% may be written as

][, l,jf e

J folgrde

Therefore, multiplying and dividing
(29) by T, the jump frequeney in the unstrained

r,

ecquation

ervstal, give

N

Q% \
e :])I: A'/ pa 6(1Jeas ( e, )t_._n]/ Y

Fx “’[(G) O"Z(P i \;
\

! (11)[ ]\,7 Z 6(11601(0 "ja(/’>n 0] /v

(34

where the statistical mechanical averages are
eiven by

/ L e
‘4.,1 P [_kl?a_fg 84 €03 ( Densdq, ):. =

(250
J{fg(g)r.:p[: k’l‘j,gz.;a([jeu; 064807,/ 1.0 do

‘f;(qb do

Ja

and

. () (‘0 R -
('1) |:/1 T ; oq, « ( Y >“ “] A

O ‘
[ e ”’[ 25 80t 6‘0(7)]i
’ _f”((]) dr

ot

.

(36)

If the exponentials in equation (34) are expanded
and onlv the first two terms in each expansion are
retained,

1
l"‘ 12 ila € )
o 2 W4 ( SeN

I Dyge) "

! ‘ e
e ).,

(37)

However, in both the activated and normal
states, the average displacement of an atom from
its mean position is zero; that is,

<5Q.1>a: <6QJ>v:0

and eqration (37) reduces to

I'=r 11.(1(5,) (38)

If the quadratic terms in the steain in equation
(30) are neglected relative to the linear terms,
substituting equation (30) into equation  (34)
gives

I‘N"*I‘,,(f.r])l: Z, Oe;) eas/kT | (39)

Equation (39) shows that the jump frequency
has a simple exponential dependence on the
strains and that this dependence is controlled by
thie derivatives of the potential energy with vespect
to the strains eva’uated at the saddle point of
the activated state.

Lquation (39} gives the general relation be-
tween the jump frequeney and the strain that
will be used in this report.  H the strain matrix
and tho interatomic forces are known, the effect
of the strain on the jump frequency can be
comput-d,

To illustrate the application of equation (39),
three special cases will be considered:

(1Y Uniform compression or expansion in which

€rp " €y €;; 7= € (40)

(udl other strains=0)
(2) S mple shear in which

€17 €477 € (41)
(all othr strains=0)
(3) Sinple elastic tension or compression in the
z-direction, in which
€ry—€
42)
€y~ €227 —UEL

where pi1s Poisson’s ratio.
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For these three cases, equation (39) gives:
For uniform compression or expansion,

T o
Isfl,,(,:p[ BT De) ] (43)
For simple shear,
o e
1',-:T, r.11)|: T OE) ] (44)

For simple elastic tension or compression in the

z-direction,
LR SE a(p :'“EL D‘P ] ~
o= “"1’[ rilon),. +/L1’( ),(, 45
into play

Since strong repulsive forces come

diffusing atom moves to the activated
position, the derivatives in equation (39) and
equations (43) to (45) are all negative.  Thus,
negative strains, corresponding to a compression
of the Inttice, decrease the jump frequency; and
positive strains, corresponding to an expansion
of the lattice, result in an inerease in the jump
frequency.  This conclusion is in accord with
what is expected on a simple physical basis.

The preceding equations are in agreement with
the results of reference 9. On the basis of a simple
model, which takes into account only nearest
neighbor interaction, the effect of internal strains
resulting from impurity atoms on the diffusion
coefficient was computed (ref. 9), and it was
found that the diffusion coefficient ig an exponen-
tinl function of the strain.

as the

DEPENDENCE OF VACANCY CONCENTRATION ON
STRAIN

[t was pointed out in the section BASIC KQUA-
TIONS OF DIFFUSION THEORY that the
quantity n appearing in the generalized Fiek's
laws (eqs. (17) and (18)) has a different interpre-
tation for different mechanisms of diffusion.  IFor
dilute interstitinl diffusion, n=t provided there
are no sources of interstitials, and Vai=:0 whether
or not the system is strained.  For diffusion by
a vacancy mechanism, however, n is the atomic
fraction of vacancies in the erystal given by

(46)

where

vacancy concentration
total number of lattice sites per ce

n,

N7

DIFFUSION

IN STRAINED SYSTEMS 7

It is therefore necessary to investigate the varia-
tion of u, with strain,
The concentration of vacancies In a erystal at

equilibrium is given by

ny=Ny erp (—AGJET) (47)
where
Iy acancy  concentration in the absence of
strain
AG,  Gibb’s free energy of formation of a vacaney

In a strained system, the free energy of forma-
tion of & vacaney may be different from that in an
unstrained system, so that the vacaney concentra-
tion depends on the strain.

Tf the strains are constant in time,
concentration is also constant in time.
during plastic deformation, vacancies

the vacancy
However,

are pro-

duced at a rate that depends on the strain rate
(ref. 10). The general equation for the vacancy
concentration is then

1 ="1,+Nyp erp (—AGET) (48)
where
", excess average concentration of vaeancies

arising from the plastic strain

AGE Gibb’s free energy of formation of a vacaney

in the strained system

The analysis in this section consists of two parts:
(1) the effect of statie strains on the free energy
of vacancy formation, and (2) the effect of plastic
flow on 7n,.

The Helmholtz free energy .4 of a perfect erystal
is given by statistical mechanics as

erp (= AT J f{l})(-\//n/lll L

for a syvstem of N particles, where ¢, is the energy
of the system expressed as a function of the co-
ordinates ¢; and momenta py. For a erystal con-
l,:lining‘ a single vacaney, the Helmholtz free energy

[ dpdg,
(49)

is given by

erp (

. . .
— A kT = J .. J exp (- k) TT dp, dg,
. i=1
(50}

whoere ¢, and ¢, are the energies of the system in
the perfeet and imperfeet cerystals, respeetively,
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Therefore, since AG=A.1--LaAV, the Gibb’s free
energy of vacaney formation is given by

crp (—AG KT -

. M 3N
‘ .. J crp (—fdT) TT dp;dq,
o e cap (—=PAVRT

. . 3!
j - l erp (—/dT) TT dp; dg;
. Y J=1

(51)
where
r pressure
AV, volume change upon formation of a vacaney
If the phase integral is separated into configu-
ration amd momentum integrals, assuming the
classical statisties of a ervstal vibrating with
normal mode frequencies, equation (51) becomes

’f,r])(— KTy dg 7T ; T (val,

cept AGURT)
dg TT (vay;

i

l erpl— ek T

Ceapl—DPAVET)Y (52)
where (), is the vibration frequeney of the ™
vibrational mode in the perfeet erystal, and (v,),
ix the frequency of the ;7 vibrational mode m
the crvstal containing a vacaney.  The integrals
in equation (52 are for the entive configuration
spuace.

In a strained ervstal, the free energy of vacaney
formation is given by an equation analogous to
equation (52):

‘ expl—gillr dg | IR
capl—=NGRTY Y e —
'(.l‘m @/Iulq“

Kerpl--PAVRT) (53)

where the index & refers to the straimed ervstal.
An extimate of the effect of strain on the

vibration  frequenciex can be made  from
Gruneisen's relation (rel. 113
dlnw .
T =y (54
din ¥’

where
V7 volume
¥ positive constant
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Integrating equation  (54) for cach of the
vibrational modes as the erystal goes from the
unstrained to the strained state vields

a6
iL_( %ATI) J

It is evident that Gruneisen’s relation leads to an
cquality of the products of [requency ratios in
the strained and unstrained systems, so  that
combining equations (52) and (53) gives

crp [_AL’[' ('_\(Jyf——.i(;p,):]:

’ e pl—gy/kT) (1(11 erpl—ou k1) dy

’ erp(—eRT) dg [ erpl(- o kT dy

Xeap [—(PAVE—PAVET]  (56)

The volume difference (A1V;— AV, 1s given by
AV —AV (=1 —(V,— V)

V=V — (V17

whetre

V7 vorume of perfect unstrained erystal

1, voiume of perfect strained cryvstal

V. volume of unstrained  cryvstal  containing »
VACHNCY
1% voume of strained eryvstal  containing a

neancy

For small strains, the volume change resulting
from tl ¢ strain should he relatively insentitive to
whethe or not the erystal contains a vacaney.
The vo ume differences (V- V0 and (V—17) are
therefore very nearly equal, and it s sufficiently
accurat ¢ to take the difference (AV;—AV,) equal
Lo zero. so that the pressure-volume terms can he
dropped from equation (36).

If th: potential-encrgy functions ¢, and ¢} arve
now expanded in terms of the straims and the
atomic displacements about the set ol points
corresponding (o zero strains and mean atomice
positions in the imperfeet and perfect crystal,
respectively, results analogous to cquations (22)
and (23) are obtained.  Continuing the analysis
leading to equation (39} shows that, to the first
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order, the free cunergy of vacaney formation
depends upon the derivatives of the potential
encrey with respeet to the strains, evaluated at
the points in configuration space corresponding to
the atoms in their mean positions in the perfect
and imperfect ervstals. However,  the
corresponding to the perfeet and imperfeet un-
strained erystals when all the atoms arve in their
mean positions are both equilibrium states
which the svstems are in potential wells with
respect to both atomie coordinates and strains.
Thus, the first derivatives are all zero and the
free energy of formation of a vacaney is inde-
pendent of the strains to a first-order approxi-
mation:

states

AGE~AG,

The terms quadratic in the strains ave, of course,
not zero.,

The analysis shows, therefore, that the jump
frequency s more sensitive to strains than the
energy of vaeancy formation.  In any diffusion
process, the effeet of strain is felt most strongly
through the jump frequency, and for static
strains this is usually the only factor that must
he considered.  Thus, to the first order in the
strains, cquation (48) may be written in the
simple form

Wi W Nyperp (—AG KT

The only problem remaining is to calculate the
effect of plastic flow on 7.

Theory and experiment both indicate (refs. 2,
10, and 12) that, {for simple types of deformation,
the number of vacancies produced by plastic
strain is proportionnl to the strain rate.  In this
report only simple plastic deformations that can
be deseribed by a single strain parameter are
considered, including  tenston, compression, and
shear.  Accordingly, for the production rate of
vacancies during plastie flow it is assumed that

iy =N e (57)
where

€ stram rate
A, a constant

Sinee the vacaney concentration during plastic
flow is greater than the thermodynamic equi-
ta .
librium value, the excess vacancies will tend to
!
precipitate out of the crystal matrix. 1t has been

shown that vacaney coudensation is most prob-
ably a heterogencous nueleation process (vefs. 13
and 14) in which the vacancies precipitate at
imperfections in the crystal such as geain bound-
aries, foreign inclusions, and voids.  IFFor such a
mechanism it s reasonable to  postulate that
racaneies are removed from the lattice by a first-
order process,  That is, the rate of destruction s
given by

. > -

n_=Kyn, (58)

so that the differential equation governing the
vacaney concentration is

dn,
dit

=N e— N, (591

where

{ time
K, a constant

On o microscopic seale, it is obvious that the
excess concentration of vacaneies may vary con-
siderably from one point in the eryvstal to another,
depending upon the distribution of the imperfee-
tions in the lattice, which act as vacaney sources
and sinks. However, in macroscopic diffusion
experiments, interest lies in the overall average
racaney  concentration.  Accordingly, o bar is
placed over n, to indicate the space average of
the vacaney concentration,

Integration of equation (59) gives

- K

=g, [1—erp (—K,t)] (60)

and equation (48) becomes

u'f.:[}% [1—erp(— KON perp(—AGGET) (61

The mode of production of vacancies by moving
dislocations is discussed in some detail in refer-
ences 10 and 120 As pointed out in these refer-
ences, o number of possible mechanisms exist hy
which moving dislocations car generate vacancies,
At present it does not seem possible to perform
an accurate caleulation of the rate of production
of vacancies, and therefore A7 must be treated as
an empirieal  parameter to be determined by
experiment.  However, it can be noted that, if
the generation mechanism involves  dislocation
climb, A5 will be proportional to the coefficient



10 TECHNICAL REPORT R—38—NATIONAL AERONAUT'CS AND SPACE ADMINISTRATION

of self-diffusion as well as to the dislocation
density. 1f o purely geometric mechanism is
involved, A7 will depend only upon the disloeation
density. Thus, for production by a geometric
nechanism,

Ki=¢

ad for production by a thermally activated

mechanism,

KNi—e, erp(—ERT)
where

¢1,¢;  temperature-independent constants
I energy of activation for self-diffusion

The rate of destruction of vacancies is deter-
mined by K. References 13, 15, and 16 are
concerned with ealeulating the rate of absorption
of vacancies by various types of vacancy sinks,
and the remaining discussion of this section is
largely an extension and development of this work.

The constant &, depends on the nature of the
vacaney sinks in the material.  Obviously, differ-
ent kinds of vacaney sinks are possible.  Thus, a
foreign inclusion may collect vacancies and give
rise to u void that acts as a spherical or ellipsoidal
sink, and large grain boundaries may act as two-
dimensional sinks.  Dislocations may act as sinks
for vacancies in two ways: If the energy of inter-
action between a vacaney and a dislocation line
is great enough, a vacancy becomes immobile and
15 essentially removed from the diffusion region
when it gets closer to the dislocation line than
sonme speetfied distance £,. The dislocation line
then gives a rise to a evlindrical sink of radius R,
This type of sink is proposed in reference 16,
If the energy of interaction between a dislocation
and a vaeaney is large only at certain discrete
points along the disloeation line, such as disloca-
tion jogs, then A, depends on the frequency of
collision between a vacaney and a jog.  This type
of sink is postulated in reference 13 in studies of
precipitation of vacancies during diffusion.  Thus,
four types of idealized vacaney sinks are con-
sidered:  spherieal,  platelike,  eylindrical, and
discrete-point sinks.

SPHERICAL VACANCY SINKS

It is assumed that a spherical sink of radius &,
ix located at the center of a spherieal region of
radins 2. During plastic flow, the production

rate ol vacancies is fGé, so that the spherically
symmetrie steady-state diffusion equation is

D, _(l_( , dng
» dr dr

)+A,e (62)

where

D, diffusion coeflicient for vacancies
r radial distance from the center
o steady-state conditions

For the purpose of this caleulation, the effect
of the deformation on the coordinates in equation
62) is neglected, and it is also assumed that /1),
is independent of position.

The boundary conditions chosen for the solution

of equation (62) are

w2t =0

(7).,

Equetions (63) imply that the sink is a perfeet
absorber of eoxcess vacancies and that the sinks
are uniformly distributed through the crystal in
such a way that the distance between them is 28,

The solution of equation (62) with the boundary
conditioms given by equations (63) is

(6:3)

WO K/ e
Pkt L (A A T
e r%l),, n, r 2 ‘)

(64)

The average concentration 73 throughout the
spherical volume of radius I is given by

R
.‘iJ n2ridr
R,

ng=

Perforn ing the integration in equation (65) gives

e —Re  R2 l(lx""——lu,,)]

ORI
] lm+7"m e

=, LR,
(66)

H R,«l?, so that the distance between sinks
is muek larger than their radius, then, at steady
state,

—, Kl -
no==-1" 167)
312, /s,,
But froin equation (59), the steady-state condition
gl\ €S

Kie— K.t (68)
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which, combined with equation (67), gives

. 3D, ‘
[\g—' 1])374 (69)

or, if there are f sinks per unit volume,
Ky=4nR,fD, (70)

PLATELIKE SINKS

For platelike sinks of thickness L, and a distance
2L apart, the boundary-value problem analogous
to equations (62) and (63) is

dzn?

ds?

ny(L,) =0

dne
: =()
dr /.
where o is the perpendicular distance from the
The solution of equation (71) 1s

D, + Ke=0

(71)

plate.
“g=1[‘):—f[(/4.rfr,/,,,>—%(.ILLg)] (72)

and if L,<L, the average concentration is

_ Kl .
"D, (3)
.2D, -

F = F (74)

or, if the arca of the platelike sinks is approxi-
mately L2 (as would be the case in a matertal of

uniform grain size), then,
K,~2D,fL (75)
CYLINDRICAL SINKS

For eylindrical sinks, the boundary-value prob-
lem becomes

1d dn? ..
- <7"l)v ’d'l’:)-l"l\,lffo

r s

n2{r,) =0 (76)

(),

where

radius of evlindrical sink
distance between sinks

o
21

11
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The solution of equation (76) 1s

Ke[rd, » (’7’2 e
o__trie ro(r 77
"2 D |:2 In 3 4) (77)
and for r,<r,
-0 K]é 2 7'[ Lrd
112_27): 1 l]l —0 (‘8)
and
. 20, -
K,= = (79)
Aln =
0

If the sinks are dislocations of length [, the
volume per sink is m% and equation (79) can be
expressed as

(80)

But, fi is the number of dislocation lines per
square centimeter, that is, the dislocation density
Np, so that

_ 2D N,

»
In =
].0

K, (81)

DISCRETE-POINT SINKS

1f the vacancies are destroved by an atomic

collision process, as would be the case if only

certain points, such as disloeation Jogs, are effective

in trapping vacancies, the rate of vacaney de-

struetion is proportional to the collision {frequency
between vacanecies and jogs.

The jump frequeney of a vacaney is roughly
DA% and, if ¢ s the disloeation jog coneentra-
tion, the collision rate between excess vacancies
and jogs is
C

-7

Ny

D,
e

(82)

where (/N is the probability that, when a vacancey
jumps, it runs into a jog. 1 it is assumed that
all collisions result in a destruction of the excess
vacancy,

(83a)

Inspection of the various expressions for K,
shows that K, is proportional to the diffusion
coefficient for vacancies and to the concentration
of vacaney sinks, and depends on the geometric

character of the sink.
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In addition to the mechanisms involving migra-
tion to sinks, vacancies may disappear by combin-
mg with interstitials.  Since interstitials are much
more mobile than vacancies (ref. 16, ch. 5), only
the diffusion rate of the interstitials must be
considered in the recombination process. The
jump frequeney of an interstitial is /2%, where
D, is the diffusion coefficient for the motion of
mterstitial atoms.  If the concentration of in-
terstitials is 0, A, s given by

- D, .
K=" (83b)

Thus, if the vacancies are destroyed by recom-
bination with interstitials, A, is proportional to
the diffusion coeflicient for interstitials rather than
to the diffusion coefficient for vacancies.

In an actual ervstal, several of the production
and annealing mechanisms may be operating
simultancously, in which case the constants K,
and A5 are given by sums of the special cases
deseribed previously,

DIFFUSION COEFFICIENT AS FUNCTION OF STATIC
AND DYNAMIC STRAINS

In the previous sections, the theoretical frame-
work for an analysis of the effeet of strain on
diffusion has been developed.  In this seetion, the
previous results are combined to give the final
functional dependence of the diffusion coeflicient
on the strains.

From cquation (19) it is evident that for an
isotropic solid under homogeneous strain the
diffusion coeflicient for the flow of species N is
given by

D, = o, T, (84)
where
A lattice parameter
a constant that is determined by the ervstal
structure
The subseript ¢ refers to the strained ervstal.

Four special cases of the general equation (84)
are considered:

(1) Diffusion by an interstitial mechanism in

the presence of statie strain (strain rate,
ZOr0)

(2) Diffusion by a vacancy mechanism in the

presence of statie strains

(3) Diffusion by an interstitial mechanism dur-

ng plastic deformation {(strain rate not
AOro)
(4) Diffusion by a vacaney mechanism during
lastic deformation.
The four diffusion cocflicients corresponding to
these four cases will be labeled DO o I)(Z", and
D' respeetively.

For case (1), ny=1 as discussed in the secetion
DEPENDENCE OF VACANCY CONCEN-
TRATION ON STRAIN, and T is given by one
of the equations (39) or (43) to (45). Yor the
purposes of this discussion it is assumed that the
deformation is a uniform lattice contraction, so
that equation (43) gives the dependence of the
jump frequency on strain. - The extension to other
types of strain 1s obvious.  Using equation (43)
and the fact that the strained lattice parameter
is reluted to the unstrained lattice parameter hy
the factor (1--¢) for case (1) vields

i ; 2 I e [ Op | ,
) _ 2 2 . — ~
DL —aN(14€)*Texp T \ae)m (85)

For case (2), the vacaney concentration is gov-
cerned by equation (47), and to a first-order
approximation 1s unaffected by strain.  Sinee
ny="n,/.Nz, and for the homogencous deformation
case being considered I'y is given by equation (43)
the diffusion coeflicient for case (2) is given hy

H,

G 2 e ) 9o __'& a‘r’ :I )
DY ek T e)(.lpl: “,(ae)m (86)

Sitiec plastic flow does not affeet the number
of interstitial sites, #,==1 even in case (3), and o
result identical to that of equation (83) is obtained:

i , 1 Sell) [ Q¢ .
)P ATl 2, Selt) w) <
DD oN U1 et)] (1])[ T (Oe » (87)

A significant difference between equations (87)
awd (87) is that in equation (87) the strain, and
therefore the diffusion coefficient, is a funetion
of time  Also, in equation (85), the strain that
must be considered is the actual lattice strain and
not the observed macroscopie strain. - For plastie
deformations, these two strains are not, in general,
equal,
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For case (4), the vacaney concentration is given
b ol
bv equation (61). Thus, again using equation
. tal
(43) and the fact that w0 /Ny Tor ease (4) gives

. [ Bett) [ 0g
1] (.:p[ kT (\,()e )z.u]
(1 eap! [\"_J)]} (R8)

For interstitial diffusion, the diffusion coefficient
in the unstrained case is

D —anr, |1

n, HWe
Ny KN,

D" =aN'r, (89)

and, for diffusion by a vacaney mechanism in the
unstrained case,
T,

D™ —aN'T, ]
« i\‘r

Therefore, equations (85) to (8]) may be written as

DR —DW (1 e)erp [—A;; (Z‘f)“] (90)
DO DWA | erp [— e g‘p)t] )
DY D }'e(f)]"(*.l‘/:[ T (O‘P) U] (92)
iteep I: ‘7('//') (Ow) ]
{ +[{\)If (- e pl e Kol |} (9:3)

These equations show how the effeets of various
tvpes of strains on the diffusion coeflicient can
be taken into account for different  diffusion
mechanisms.  The extension of this analysis to
other diffusion mechanisms is completely analo-
gous to the present development and will not be
given here.

[t should be noted that, in the expression for
D' the strain rate in equation (93) is the macro-
scopie strain rate, although the strain e(t) is the
microscopie lattice strain.

DY =D

(COMPARISON OF THEORY WITH EMPIRICAL
DATA

The theory presented in this report makes a
number of predictions that can be checked by
existing experimental data.  In this seetion, an
analysis of the validity of the theory is made by
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comparing the theoretical results with diffusion
data.  The equations developed thus far are not
alwaxs in the form most suitable for comparison
with experiment.  Whenever necessary, therefore,
the equations will be transformed into a con-
venient form.

The only literature data available for testing
equation (91) are concerned with the effect of
Livdrostatie pressure on the diffusion coeflicient.

The experimental data usually give the diffusion
coefficient as a funetion of pressure, so that, from
the pressure-volume relation of the material, the
data can be obtained as a function of strain.
Sinee pressute-volume data are generally given
in terms of AV/V,, 1t is convenient to express e
as a volume strain (1, 1s the volume of zero
pressure).  The strain e s

e=2r N (94)

so that, in terms of volume strain,

1Al
e-":’_;‘,” (95)
for small strains.  Therefore, using  equations
(94) and (95) and also the faet that
R A TN 2
N2 x2(1+‘} ) (96)
. o

changes equation (91) to

)”'(1+ )42 f*'/)"’(}:])[-—-‘ k'l

).

(87)

Therefore, it is evident that a plot of In °
(1-+AYV )24 against. AUV, should be linear
with a slope m given by

e _(gf), v (98)

atd an intercept given by In D®,

Several investigators have obtained data on the
variation of the diffusion coeflicient with pressure
that are suitable for testing equation (97).  Ref-
erence 4 presents data for the self-diffusion co-
efficient as a Tunction of pressure for sodium,
phosphorus, and mercury up to pressures of
12,000, 4000, and 8000 atmospheres, respectively.
The self-difTusion coetheient of liquid gallium up
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to pressures of 10,000 atmospheres is given in
reference 17. The self-diffusion coefficient for
single erystal zine up to pressures of 10,000
atmospheres for diffusion in the directions paraliel
to and perpendicular to the e-axis is determined
in reference 1.

The electrie conductivities of silver ehloride and
sitver bromide have been measured as a function
of pressure up to 300 atmospheres (ref. 18}, Since
the conductivity is proportional to the diffusion
cocfficient of the silver ion by the Nernst-Einstein
relation, the data of reference 18 are suitable for
testing cquation (97).

Plots of the wvariation of the quantity log
DO+ AV )72 against AV/V, for the self-
diffusion of sodium, phosphorus, mercury, and
gallium are shown in figure 1. The quantities
log DD+ AV/ V)= for single erystal zine
were plotted against the fractional change in
lattice parameter AX/A, since this 1s a more natural

104
7
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Al /3
V.,
against fractional change in lattice parameter AN/, for
self-diffusion in zine.

Frcure 2. Variation of log ])s<1+ plotted
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unit for discussing diffusion in anisotropic ervstals,
and the linear compressions perpendicular and
parallel to the e-axis are available. The zine
data are plotted in figure 2.

Figure 3 gives log 1/1 plotted against AV,
for silver chloride and silver bromide, where /7 is
the resistivity. The volume change AV/V, s
small enough for the pressure range considered so
that (14 AV/V,)=% does not appreciably affect
the results and ean be ignored.

Compressibility data (refs. 19 (o 23) were used
to obtain the appropriate value of AV/V, for
zine, sodium, mereury, silver ehloride, and silver
bromide. For gallium, AV/V, was computed
from the data of reference 22 assuming that the
form of A17/17, as a function of pressure is the
same as that for mercury. The values of AV/V,
for white phosphorus were computed from data
from reference 24 assuming that the variation of
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the fractional volume change with pressure has
the same form as that observed in reference 25 for
black and red phosphorus,

In all cases, the available compressibility data
were extrapolated to the diffusion temperature.

The linearity of the plots presented in figures 1
to 3 shows that the form of equation (87) i1s valid
for those systems investigated within the probable
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maceuracies of the experiments and the caleu-
[ations,

The slopes of the plots given in figures 1 to 3
are reluted to the interatomic forees through equa-
tion (97).  If the repulsive potential is steep for
a certain metal, that is, the atoms are “hard,”
then for a given atom displacement arising from
a lattice strain, the rate of ehange of the potential
cnergy with strain s much greater than for a
sttnilarly strained crystal containing “soft”” atoms,
Thus, (0¢/0e); o should be large for hard atoms
and small for atoms having slowly varying poten-
tial functions.  The quantity —1/k (0p/Oe)y o=
m T has been caleulated from the slopes of the plots
of X2 ++aAViV,) 24 plotted against AV/V and
the absolute temperatures of the available diffusion
experiments.  Table T summarizes these values of
moand nT.

TABLE 1. -COMPARISON OF VALUES OF m7T FOR

VARIOUS METALS

Tem-
Metal peria- m ; 'l
| tare, 7, | |
[ N ‘ ‘
* 1
; | ; |
Sadiam ; 3633 279 010, 120 ]
Zine (L) T ‘ 86,650, 200
Zine (1. ‘ 580 | 3L T 20, 100
Mereury (liguid) 303 6.5 1,970 |
Gatlinm (lignid) RN 6.5 Lot
Nilver in silver chlo- ‘
rice . LYRE oL % 52 600 |
Silver in silver hro- |
m de 573 1280 73,000 |
\ |
I

The owest values of m T are those for mercury
and ga lium.  This is to be expected, since they
have relatively “soft” potential functions, and
being i1 the liquid state, their atoms are highly
mobile so that they can adjust to the motion of
the dif"using atom to give the lowest possible
values to the interatomic forees.  The values of
mT for the silver halides are among the highest,
and this is entirely reasonable in view of the
steeply rising repulsive potential a silver ion meets
as it nugrates from one stable position to the next.
In zine, m 7T is much larger for diffusion perpen-
dicular to the c-axis than for diffusion parallel to
the c-axis.  This is in accord with the fact that the
nearest neighbor distances are closer in the per-
pendicnlar position, so that when an atom migrates
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to the activated position, the change in the inter-
atomic forees is greater for a corresponding process
in a dircetion purallel to the e-axis. Of all the
solids listed, sodium has the lowest value of m T
The interatomic potential varies relatively slowly
for sodium; in fact, recent ealeulations (unpub-
lished NASA data) show that the potential well
is s0 broad that the pairwise potential is repulsive
Lo distances as far out as 1.4 times the nearest
neighbor distance in solid sodium.  Thus the low
value of w T for sodium is in agreement with its
interpretation in terms of the interatomie forees.

The fact that w7 is so much smaller for the
liquid metals than for any of the sohds including
sodium is indicative of the difference in the mech-
anism of diffusion in liquids and solids. In a
liquid, the atoms are not constrained to remain
at lattice positions, so that diffusion occurs by a
cooperative process involving the migrating atom
and its nearest neighbors.  Thus, the change in
the interatomice forces can be kept to a minimum
throughout the diffusion process, and consequently
m T would be very low,

DEPENDENCE OF DIFFUSION COEFFICIENT ON STRAIN RATE

In the absence of strain, the diffusion coeflicient,
1) 1s given by the usual expression

D aXwnerp(—AGRT) (99)
For diffusion by a vacaney mechanism, n 1s the
atomic fraction of vacancies in the erystal at
equilibrium.  In a cryvstal undergoing plastie de-
formation, the diffusion coeflicient is

D% aNing, erp(—AGET) (100)
As usual, the subseript s refers to the strained
svsten.

I it could be postulated that, at the stress levels
at. which plastic flow occurs at diffusion tempera-
tures, the effects of the strain on the quantities X,
v, and A6 are negligible compared with the effect
of the strain rate on the vacaney concentration,
then to a good approximation the ratio D/
would be given by

D0

Do, (on

This postulate is a reasonable one, since it is
well known that moving dislocations produce large

numbers of vacanecies.  Also, plastic flow occurs
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by the displacement of farge blocks of material as
a result of dislocation motion, so that the micro-
scopie strains defining the relative atomie positions
are nmuch smaller than the macroscopic strains.
In fact, it is highly probable that the microscopie
strains are alwavs below the elastic limit of the
material.

Recent measurements (unpublished NASA data)
of the effect of dynamie plastic flow on the rate
of diffusion of hydrogen through nickel substan-
tinte this hypothesis.  The diffusion coefficient
has heen found to be independent of the state of
plastic strain for tensile strain rates of 0.02 to
0.4 hour™!. Since hydrogen through
nickel by an interstitial mechanism, any effect of
strain on the diffusion coefficient. must manifest
itself through the quantities N, v, and AG. The
hyvdrogen diffusion experiments can therefore be
interpreted as indicating that the effect of plastie
deformation on quantities other than the vacaney
concentration is negligible.

For the simple types of dynamie strains dis-
cussed in the seetion DEPENDENCE OF VA-
CANCY CONCENTRATION ON STRAIN,
ng/n is obtained by dividing equation (61) by
equation (47), so that

diffuses

Dw Ke .
T)—mzl +%E— (1—eap(—K,t))

»

(102)
Equation (102) shows that ), inercases with time
up 1o an asyvmptotic steady state at which

Ke

2y

Do
o

(103)

The time required to reach the steady state de-
pends upon the value of K,. In order to obtain
an estimate of K,, it will be assumed that the pre-
dominant type of vacancy sink is a eylinder around
a dislocation line, so that equation (81) is valid:
2rD, N},

Ry== (104)

In 2t

7,
Typical values of 12, at approximately 1000° € are
in the range of 1077 to 107 centimeter squared per
second, and a value of about 107 for 2aN,/
In (r,/ry) has been given in veference 26, so that K,
is in the mnge of 1 to 1072 Consequently, the
factor [1--cop( K] reaches o value of 0.9 in
a time somewhere between 0.04 and 4 minutes,
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For the example stated, a diffusion experiment
should last at least several hours if 12,—10°% and
at least several minutes if /), is as high as 107,
The only data available i the literature on the
effect of plastie deforimation on diffusion are for
the case of iron over a restricted range of strain
rates (refs, 2 and 3).  Although the data are not
extensive, and some doubt exists concerning the
absolute magnitude of the effect (ref. 3), a linear
relation between the diffusion coefficient and the
strain rate seems to be valhid. This is in agree-
ment with the steady-state equation (103).  in
view of the searcity of the data in this field, not
much more can be said concerning the agreement
of the theory with experiment.  Additional ex-
perimental work in this area is highly desirable.

VOLUME OF ACTIVATION

From a comparison of equations (97), (98), und
(100), the free energy of activation for diffusion
i a svstem subjected to hydrostatic pressure
varies with the volume strain according to

AV

AlG, —~AG—m ‘—'.'—lc'l' (105)
[

sinee p~>p for small lattice strains.  Applying the

definition of the activation volume for small lattice

strains gives

. RS AR .
AV o — kT Y ]7 (106)
But,
AV
f)if;,, g (107)
or /.

where 8 is the compressibility, so that the activa-
tion volume is given by

AV, =mpkT (108)

Table Il presents values of the activation
volume ealculated from equation (108) at atimos-
pherie pressure for those systems for which data
are availuble.  Figure 4 is a comparison of the
activation volume of self-diffusion in sodium calcu-
lated from equation (108) with the activation
volume caleulated in reference 4 from experimental
data. The agreement is seen to be good.

TABLE . —ACTIVATION VOLUMER FOR SELF-
DIFFUSION OF VARIOUS METALS AT 1 ATMON-
PHERE CALCULATED FROM EQUATION (108}

Activation volume, AV
Tem- cefg-ntm
Metal peri-
tare, T,
K| Caleu- Fxperimental
lated
Sodinm . 363 12.3 12.3 (ref. 1)
Phosphorus 314 LT 3000 (ref. )
(w hite) “
Zine (L) ‘ HR0 3.0 L9 (ref. 1)
Zine (D 580 8.3 16,9 (ref. 1)
Mereury . 303 .62 DT (ref. &)
(liguid)
Gallium L3803 L6255 (ref. 16)
(liquid) i
© o Silver in silver 573 10,3
i chloride
PooNilver insilver 073 13.7 ‘
bromide ! i
\

T TT 1)
B Source
12 RN 4 & Nachtrieb(ref. 4) |
E o Equation (108)
s [ T -t
o o —+ -
5oL N
; 8+
<
s —
g ?\3
=] - . ] 4.
é 6
s LT 1171
R
S o
2l

O ~ 2000 4000 6000 8000
Pressure, P, kg/cm2

10000 12,000

Fioure 4. Activation volume plotted against pressure
for self-diffusion of sodium at 362° K.

CONCLUSIONS
A theory was developed that relates diffusion
rates t¢ the state of strain of the material.  Fiek's
laws of diffusion were generalized to include the
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strain.  The generalized equations differ from the
ordinary diffusion equations in that the flux of
diffusing material is proportional to terms con-
taining the strain gradient as well as (o terms
confaining the coneentration gradient.  In
dition, a molecular-kinetie theory was developed
that relates the diffusion coeflicient to strain in
terms of the atomie properties of the system.

The effeet of dynamie plastic deformation on the
diffusion coefficient was investigated by consider-
ing the rate of production of vacancies by moving
and the rate of precipitations of
vacancies at vacaney sinks.  The resulting equa-
tion states that the diffusion coefficient is a linear
function of the strain rate.

Several predictions that can be checked by
existing experimental data may be made from the
theory:

ad-

disloentions

1. For diffusion asx a function of hydrostatice
pressure, the diffusion coefficient is an exponential
function of the volume strain.

2. The rate of change of the diffusion coeflicient
with strain is related to the interatomic forees.
The relation is explicit enough that the variation
of the diffusion coeflicient with pressure can be
interpreted in terms of the interatomic potential-
energy functions of the material,

3. For diffusion under hydrostatic pressure,
the activation volunme can be calculated from the
compressibility and the rate of change of the
diffusion coeflicient with volume strain.

4. Dynamie plastic deformation inereases the
diffusion rate, the diffusion  coefficient
linearly related to the strain rate at steady state,

In every ease for which data are available,

being

these concelusions are in agreement with experi-
ment.

The general framework of the theory provides
a basis for understanding the effeet of strain on
diffusion in terms of the molecular-kinetic proper-
ties of the system and should provide a valuable
tool for comparing diffusion rates for different
states of strain, as well as for investigating the
mechanism of diffusion.
Liwis Researcn CENTER
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